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The thermocapillary and shear-induced instabilities of a thin heated layer of liquid
bounded from the top by a deformable free surface and at the bottom by a horizon-
tally oscillating plate are studied for both Earth-bound and microgravity conditions.
Finite-wavelength thermocapillary convection can be stabilized very significantly by
the oscillatory shear, whereas shear-induced instabilities are greatly stabilized if the
Marangoni number is negative. For long-wavelength thermocapillary convection, os-
cillatory shear can stabilize or destabilize the basic state, depending primarily on the
imposed forcing frequency. With microgravity, significant stabilization of the domi-
nant long-wavelength convection can be achieved by carefully selecting the imposed
frequency.

1. Introduction
A heated layer of liquid possessing a deformable surface can give rise to both

long- and finite-wavelength thermocapillary instabilities. Results concerning the finite-
wavelength thermocapillary instability date back to the famous experiment on convec-
tion by Bénard (1901), although his results were originally thought to be associated
with buoyancy-induced convection. Detailed theoretical analysis of this instability
was given by Pearson (1958), and recent experimental results have been reported
by Schatz et al. (1995). The long-wavelength instability tends to be the dominant
instability only in very thin films on Earth; in Space, however, it tends to be always
dominant. It was first reported by Scriven & Sternling (1964), and Smith (1966)
extended the long-wavelength analysis to include the stabilizing effect of gravity. Re-
cently, an experimental investigation of the long-wavelength instability for a thin layer
of liquid was reported by VanHook et al. (1995); see also VanHook et al. (1997). The
experimental results not only confirm the existence of the long-wavelength instability
but also illustrate its pronounced connection with surface deformation, which can
eventually lead to the formation of dry spots. Needless to say, the rupture of the
fluid film would be catastrophic in regard to either thermocapillary heat transfer or
materials processing involving such films in Space.

It is therefore of interest to see if these instabilities can be controlled. One method
of control involves imposing oscillatory non-planar shear on the liquid layer as shown
diagramatically in figure 1. It was discussed by Or & Kelly (1995) for thermocapillary
(Marangoni) convection when small-amplitude oscillations occur. They found that os-
cillatory shear tends to stabilize the finite-wavelength (or Pearson) mode of instability



22 A. C. Or and R. E. Kelly

Liquid

Y

X

Z

U0* cos ö*t

V0* cos ö*(t + ä)

Figure 1. Geometrical configuration.

but to destabilize the long-wavelength, deformational (or Scriven–Sternling–Smith)
mode of instability. Stabilization of the Pearson mode seems to be akin to the sta-
bilization of Rayleigh–Bénard convection, which Kelly & Hu (1994) have predicted
to be quite pronounced on a linear basis for large-Prandtl-number fluids at moderate
values of the Reynolds number (< 200). Schatz et al. (1995) give experimental results
confirming the weakly subcritical nature of the finite-wavelength instability in thermo-
capillary convection. However, we argue that the results of Hall & Kelly (1995) for the
analogous case of Rayleigh–Bénard convection in a fluid with temperature-dependent
viscosity, which predict that oscillatory shear converts the subcritical bifurcation into
a supercritical one, might hold also for the onset of the present finite-wavelength insta-
bility. The shear destroys the horizontal isotropy required for hexagonal convection.
The strongly subcritical instability associated with the long-wavelength instability as
described by VanHook et al. (1997) is more problematical. For that instability we can
only discuss the effect of oscillations upon the location of the bifurcation point.

While the results demonstrate that the Pearson mode can, in principle, be strongly
stabilized, they also indicate that the deformational mode can be strongly stabilized
or destabilized, depending on the frequency of the oscillation. The destabilization
is related to the effects of unsteady shear upon the free surface, as discussed for
the isothermal situation by Yih (1968) and Or (1997). The regions of instability
for the isothermal case as a function of Reynolds number and a non-dimensional
parameter β involving the imposed frequency are shown in figure 2 and will be
referred to later. The open-ended loops correspond to the large wavelength instability
of Yih (1968), while the neutral stability curves branching off the loops have been
discussed by Or (1997). These slanted curves are associated with finite-wavelength
instabilities except at the branch point itself. Both instabilities can, of course, also
occur when the layer is heated and are important in governing the overall stability
of the heated layer. Although the Bond and crispation numbers are important in
deciding whether the dominant thermocapillary instability consists of finite- or long-
wavelength disturbances, the effect of the oscillations upon changing the critical value
of the Marangoni number seems to be mainly controlled by the Reynolds number
and non-dimensional frequency.

It should be emphasized that, when we refer to ‘shear instability’, we are referring
to the interfacial instability described by Yih (1968) and not to an instability of the
basic unsteady shear flow. The reader is referred to the paper by Blondeaux & Vittori
(1994) for a survey of results concerning the instability of the Stokes layer. It seems to
be clear that nonlinear effects must be considered in order to describe this instability
and so it is out of the realm of validity of the present linear analysis. Some additional
remarks are made in this regard at the end of the paper. We organize the paper
as follows. In § 2, we present the mathematical formulation of the problem. In § 3,
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Figure 2. (a) Neutral curves of the Yih instability plotted in the (β, (Lβ/2)−1/2)-plane. The neutral
curves of the finite-wavelength instability (straight lines) were computed at PrCr = 0.05 and
B/2PrCr = 1.0 (figure reproduced from Or 1997, figure 3a). (b) Family of neutral curves of the
long-wavelength instability with heating effects included. Labels show values of M∗; the isothermal
loops are shown as thick dashed lines.

the analysis and results for long-wavelength disturbances are given. We feel that a
better understanding of this complicated problem can be obtained by discussing these
results before those for arbitrary wavelength disturbances, which is done in § 4. Some
concluding remarks are given in § 5.

2. Mathematical formulation
2.1. Governing equations

We consider a layer of Boussinesq liquid of infinite horizontal extent and of mean
thickness h, bounded below by a rigid horizontal plate and above by a deformable
free surface. Either the layer is assumed to be very thin or the effective gravitational
acceleration is assumed to be very small so that the buoyancy force can be taken to
be negligible. This allows us to focus upon the thermocapillary and interfacial shear
instabilities. The plate is isothermal with temperature T ∗1 . At the upper surface (z = 0),
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a mixed thermal boundary condition is applied involving a Biot number so that a
temperature difference ∆T ∗ is maintained across the layer in the undisturbed state.
We scale length, time, velocity, pressure and temperature according to h, ω∗−1, ν/h,
ρν2/h2 and ∆T ∗, where ω∗ is the frequency of the external forcing, ν is the kinematic
viscosity, and ρ is the reference density of the fluid. The governing non-dimensional
Boussinesq equations are then as follows:

2β2∂tv + v · ∇v = −∇P + ∇2v, (1)

∇ · v = 0, (2)

and

2β2∂tT + v · ∇T = Pr−1∇2T , (3)

In the above non-dimensional equations, β is a frequency parameter governing the
thickness of the Stokes layer and is defined by β = (ω∗h2/2ν)1/2, while Pr is the
Prandtl number ν/κ. The basic horizontal flow v = U (z, t) satisfies the no-slip
boundary condition at the lower surface z = 1 (see figure 1) and so

U(1, t) = Re cos t, (4a)

V (1, t) = λRe cos(t+ δ), (4b)

where the Reynolds number Re = U∗0h/ν, the velocity ratio λ = V ∗0 /U
∗
0 , and U∗0 and

V ∗0 are the amplitudes of the oscillatory motion of the wall in the x- and y-directions,
respectively. We also choose our x- and y-directions so that the oscillation in the
x-direction has a larger magnitude, i.e. λ < 1. A time phase of δ is introduced to give
a non-planar shear effect. The free surface does not deform due to the basic flow, and
so a stress-free condition is imposed on the basic flow at z = 0, as follows:

∂zU(0, t) = ∂zV (0, t) = 0. (4c)

The governing equation for the basic flow U (z, t) is

2β2∂tU = ∂zzU , (5)

where U and V are the two components of U . The solution of (5) that satisfies the
boundary conditions (4a–c) is given by

U(z, t) = Re{φc(z) cos t+ φs(z) sin t}, (6a)

V (z, t) = λRe{φc(z) cos(t+ δ) + φs(z) sin(t+ δ)}. (6b)

The two functions φc(z) and φs(z) are given by

φc(z) =
1

2

{
cosh(1 + i)βz

cosh(1 + i)β
+

cosh(1− i)βz

cosh(1− i)β

}
, (7a)

φs(z) = i
1

2

{
cosh(1 + i)βz

cosh(1 + i)β
− cosh(1− i)βz

cosh(1− i)β

}
. (7b)

The temperature T (z) of the basic state relative to the reference temperature is
governed by the steady conduction equation and is given by

T (z) = z − 1. (8)

We now introduce perturbations in the flow and thermal fields by superposing a
disturbance velocity with components u, v, and w and a disturbance temperature θ on



Instabilities in a layer of liquid with a deformable surface 25

the basic state. Upon linearization, we obtain the following perturbation equations:

2β2∂tu+ (U∂x + V∂y)u+ w∂zU = −∂xp+ ∇2u, (9)

2β2∂tv + (U∂x + V∂y)v + w∂zV = −∂yp+ ∇2v, (10)

2β2∂tw + (U∂x + V∂y)w = −∂zp+ ∇2w, (11)

∂xu+ ∂yv + ∂zw = 0, (12)

and

2β2Pr ∂tθ + Pr(U∂x + V∂y)θ = −Pr w + ∇2θ. (13)

These equations are, respectively, the three linearized momentum equations, the
continuity equation, and the thermal energy equation. The bottom-plate boundary
conditions at z = 1 are

u = v = w = θ = 0. (14)

In addition to the above perturbations there is also a surface deformation giving rise
to a perturbation height η(x, y, t) on the free surface. The boundary conditions at
the free surface are evaluated at the mean height z = 0. They consist of equations
for the normal and tangential stresses, the heat transfer condition and the kinematic
condition, as follow respectively:

((∂xη)∂zU + (∂yη)∂zV )− B

2PrCr
η∂zP + ∂zw −

p

2
+

1

2PrCr
(∂xx + ∂yy)η = 0, (15)

η∂zzU + (∂zu+ ∂xw) = MPr−1
(
(∂zT̄ )∂xη + ∂xθ

)
, (16)

η∂zzV + (∂zv + ∂yw) = MPr−1
(
(∂zT̄ )∂yη + ∂yθ

)
, (17)

Bi(η∂zT̄ + θ) = ∂zθ, (18)

2β2∂tη + (U∂x + V∂y)η = w. (19)

The additional non-dimensional parameters that appear in the perturbation equations
are defined as follows: M = γ∆T ∗h/ρνκ, B = ρgh2/σ, Bi = qh/K , Cr = ρνκ/σh.
These parameters are, respectively, the Marangoni number, Bond number, Biot num-
ber and crispation number. The physical quantities involved in the parameters are
standard, where γ is the rate of change of surface tension force with respect to tem-
perature, σ is the surface tension for the reference state, α is the coefficient of thermal
expansion, q is the surface heat flux, and K is the thermal conductivity. The general
system consisting of the six dependent variables u, v, w, p, θ and η, can be reduced
to one consisting of three dependent variables, namely w, θ and η (see Or & Kelly
1995). Now we let

(w, θ, η) = (W (z, t), Θ(z, t), N(t)) ei(kxx+kyy) + c.c. (20)

where c.c. denotes the complex conjugate. Upon substitution of (20) into (9)–(19), the
governing equations are reduced to{

2β2∂t + i(kxU + kyV − (∂zz − k2)
}

(∂zz − k2)W − i(kx∂zzU + ky∂zzV ) W = 0, (21)

and

Pr
{

2β2∂t + i(kxU + kyV )
}
Θ − (∂zz − k2)Θ = −Pr W, (22)

to be solved subject to the wall boundary conditions (at z = 1)

W = ∂zW = Θ = 0, (23)
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the free-surface normal stress condition (at z = 0)

(2β2∂tz − ∂zzz + 3k2∂z)W −
k2

PrCr
(B + k2)N

= −i(kx(U∂zW + 2k2N∂zU)− ky(V∂zW + 2k2N∂zV )), (24)

the free-surface shear stress condition

∂zzW + k2W − Pr−1Mk2(N +Θ) = i(kx∂zzU + ky∂zzV )N, (25)

and the free-surface thermal and kinematic conditions

∂zΘ − Bi(N +Θ) = 0, (26)

2β2∂tN −W = −i(kxU + kyV )N, (27)

where k2 = k2
x + k2

y .

2.2. Discussion on pattern orientation

In the governing equations, Re appears as a multiplicative factor in the advective
term i(kxU(z, t) + kyV (z, t)), which upon substitution from (6a, b), has the following
form:

iRe{kx(φc(z) cos t+ φs(z) sin t) + λky(φc(z) cos(t+ δ) + φs(z) sin(t+ δ))}. (28)

The bidirectional nature of the above term is apparent. However, there is a way
to rewrite the above expression in unidirectional form by introducing an effective
Reynolds number, R. With some algebraic manipulation, (28) can be rewritten as

ikR{φc(z) cos t̂+ φs(z) sin t̂}, (29)

where the effective Reynolds number, R, is called the non-planar Reynolds number
and is given by

R(φ, λ, δ) = Re((cosφ+ λ sinφ cos δ)2 + (λ sinφ sin δ)2)1/2, (30)

with

kx = k cosφ, ky = k sinφ. (31)

The time t̂ used in (29) has a time shift involving a phase ϕ, given by

t̂ = t+ ϕ, ϕ = sin−1(Reλ sinφ sin δ/R). (32)

The ratio R/Re depends on the wave vector direction, φ, which is measured counter-
clockwise from the x-axis, the amplitude ratio λ, and the phase-lag angle δ. Except for
φ, these parameters as well as Re are externally imposed. In order to give a maximum
non-planar effect, we let δ = π/2 (see discussion by Kelly & Hu 1993). The criticality
of the onset of convection occurs at the minimum of M, which is a function of k
and the non-planar Reynolds number, R, both of which are internal parameters. For
δ = π/2, we have R = Re(cos2 φ+λ2 sin2 φ)1/2. The non-planar Reynolds number has
to assume a maximum value when the non-planar shear exerts a destabilizing effect
on convection and a minimum value when the shear exerts a stabilizing effect instead.
The maximum value of R = Re for λ < 1 corresponds to φ = 0, i.e. transverse rolls.
On the other hand, the minimum value of R = λRe corresponds to φ = π/2, i.e.
longitudinal rolls. With this result, it is sufficient for us to consider only two types of
pattern orientation: (a) the purely x-periodic (transverse) mode with R = Re, and (b)
the purely y-periodic (longitudinal) mode with R = λRe (note: 0 < λ < 1).
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3. Long-wavelength expansion
This approach is used to obtain results that can be compared directly to the loops

in figure 2(a) that describe the long-wavelength instability of the isothermal system.
As discussed in Or (1997), the results are used eventually also to locate the branch
points at which the finite-wavelength stability curves originate. As we shall show,
the various non-dimensional parameters combine to form a smaller group, and so
the parametric trends can be discussed more easily for long-wavelength than for
arbitrary-wavelength disturbances. However, it should be emphasized that the overall
stability of the basic state can only be determined by considering finite-wavelength
as well as long-wavelength disturbances, and this will be done in § 4. For small k, we
express W , Θ and N in the following form:

W (z, t) = k(RW1(z, t) + kR2W 2(z) + . . .), (33a)

Θ(z, t) = (Θ0(z) + kRΘ1(z, t) + k2R2Θ2(z) + . . .), (33b)

and

N(t) = (N0 + kRN1(t) + k2R2N2 + . . .). (33c)

The overlines on variables denote time-mean quantities, which are the only second-
order quantities we need to consider in order to obtain the lowest-order solvability
condition. The scaling factor R is introduced to make R appear in the second-order
balance. At O(k1), W1(z, t) and Θ1(z, t) can be expressed as

W1(z, t) = i(Ŵ 1(z) cos t+ W̌ 1(z) sin t), (34a)

Θ1(z, t) = i(Θ̂1(z) cos t+ Θ̌1(z) sin t), (34b)

N1(t) = i(N̂1 cos t+ Ň1 sin t). (34c)

The following complex notation will be used shortly:

Φ = φc + iφs, W̃1 = Ŵ 1 + iW̌ 1, Θ̃1 = Θ̂1 + iΘ̌1, Ñ1 = N̂1 + iŇ1.

(i) O(k0)
At this order, only the thermal and surface displacement effects appear. The governing
equations and boundary conditions evaluated at z = 0 and at z = 1 are

D2Θ0 = 0, DΘ0(0)− Bi Θ0(0) = Bi N0, Θ0(1) = 0, (35)

where Df = df/dz. The solution is obtained as

Θ0(z) =
Bi N0

1 + Bi
(z − 1). (36)

The constant N0 will remain arbitrary.

(ii) O(k1)
The governing equations for velocity and temperature are more conveniently treated
in a complex form; these are, respectively,

i2β2D2W̃1 + D4W̃1 = 0, (37a)

and

i2β2PrΘ̃1 + D2Θ̃1 − PrW̃1 = −PrΦΘ0. (37b)
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These equations are solved subject to the homogeneous wall boundary conditions

W̃1(1) = DW̃1(1) = Θ̃1(1) = 0 (37c)

and to the free-surface conditions at z = 0 involving the normal and tangential
stresses, as well as the kinematic and the heat transfer conditions:

D3W̃1(0) + i2β2DW̃1(0) = 0, D2W̃1(0)−D2Φ(0) = 0, (37d)

W̃1(0) + i2β2Ñ1 = Φ(0), DΘ̃1(0) = Bi (Ñ1 + Θ̃1(0)). (37e)

The solution W̃1(z) is identical to the isothermal solution W̃0(z) at O(k) given in
Or (1997, 3.3(a–c)). At this order the disturbance flow field generates a thermal field
which is not coupled with it. There are altogether seven boundary conditions. Both the
kinematic and heat transfer boundary conditions involve N1, which is an unknown.
We can first eliminate Ñ1 from the seven conditions to give six boundary conditions,
so that a matrix inversion of the system gives W̃1(z) and Θ̃1(z). Then we solve for Ñ1

from one of the conditions. We now proceed to the O(k2) problem.

(iii) Second-order mean field balance
At this order, the mean field equations are

D4W 2 = − 1
2
(φcD

2Ŵ 1 + φsD
2W̌ 1) + 1

2
(D2φcŴ 1 + D2φsW̌ 1), (38a)

D2Θ2 − PrW 2 = 1
2
Pr(φcΘ̂1 + φsΘ̌1). (38b)

The boundary conditions at z = 1 are

W 2(1) = DW 2(1) = Θ2(1) = 0. (38c)

The free-surface conditions at z = 0 are

D3W 2(0) = −LβN0 − 1
2
(φc(0)DŴ 1(0) + φs(0)DW̌ 1(0)), (38d)

D2W 2(0) = M∗(N0 +Θ0(0))− 1
2
(D2φc(0)N̂1 + D2φs(0)Ň1), (38e)

W 2(0) = − 1
2
(φc(0)N̂1 + φs(0)Ň1). (38f)

and

DΘ2(0)− Bi Θ2(0) = Bi N2. (38g)

The non-dimensional groups defined by

Lβ =
B

PrCrR2
, M∗ =

M

PrR2
, (39)

serve to reduce the group of parameters consisting of B, Cr, R and M, to two
parameters. Note that Lβ for the isothermal situation is identical to the parameter
L(β) defined in Or (1997). Together with Bi, which appears at lowest order, and β
and Pr, which appear at first order, we have altogether five non-dimensional groups
as k → 0 for the boundary-value problem posed by (38a–g). This problem can be
solved by standard numerical methods.

According to Takashima (1981), for example, the critical Marangoni number of the
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long-wavelength mode of convection with no shear modulation is given by

Mc =
2

3

B

Cr
(1 + Bi). (40)

On the other hand, according to Yih (1968) and Or (1997), the critical Reynolds
number under shear but with an isothermal condition (M = 0) is given by

R =

(
B

LβPrCr

)1/2

. (41)

We use R in the above expression instead of Re to avoid unncessary confusion
involving the problem of pattern orientation. In applications, R should be interpreted
as Re if the shear decreases M and as λRe if the shear increases M. Both situations
assume that M > 0.

Figure 2(b) shows, for Pr = 7 and Bi = 0.1, the family of neutral curves for

the long-wavelength instability as kc → 0 in the (β, L
−1/2
β )-plane parameterized by

imposing the value of M∗. The region above a curve is unstable and below it stable.
The three dashed loops correspond to the isothermal case at M = 0 and are the same
as the loops shown in figure 2(a), except now on an ordinate scale smaller by a factor
of
√

2. The thinner solid curves are labelled by a number on the right-hand side of the
figure indicating the value of M∗. For M∗ > 0, the loop structure disappears as M∗

increases. Gradually, the curvature of the neutral curves disappears and the neutral
boundaries tend to horizontal straight lines. As M∗ increases, so does the critical value
of Lβ . As Lβ and M∗ both become large, M∗ → 2(1 + Bi)Lβ/3, corresponding to the
limit of no shear (see (40)). The discussion at the end of § 4 has more remarks in this
limit. When M∗ < 0, the loop curves reside in the interior of the regions bounded by
the dashed loops. For M∗ = −10−2, corresponding to a stabilizing thermal gradient,
only the first loop remains as shown. The second and third loops have disappeared,
indicating no instability at higher β. In fact, for M∗ as small as −10−4, the second
and third loops have already disappeared, whereas at this small M∗ the first loop
almost coincides with the dashed line. The above results show that for M > 0 the
Marangoni effect and the interfacial shear effect reinforce each other to produce a
stronger instability. But for negative M the thermal effect strongly stabilizes Yih’s
instability.

The shapes of the neutral curves of figure 2(b) shed some light on the frequency
dependence of the long-wavelength instability. For R 6= 0 we can eliminate the
dependence on R from the two parameters, Lβ and M∗ to obtain M = (BCr−1M∗)L−1

β .

By staying on a neutral curve, say, M∗ = 10−2, M only depends on the ordinate L−1
β .

The curve is almost flat for β > 3. At a slightly smaller β, there is a small elevation
(which becomes more pronounced at even smaller M∗). Further decrease in β will
drive the curve into a dip with minimum around β = 1.1. Relative to its value at β = 0,
the ordinate of the curve indicates whether the shear is stabilizing or destabilizing
with regard to the long-wavelength convection. Thus, examining the neutral curve
with M∗ = 10−2, for example, the shear is destabilizing around β = 1.1 but mildly
stabilizing near β = 3.0. At very large β, the vertical value of a point on the curve
equals that at β = 0, suggesting that the shear effect vanishes.

The purpose of figure 2(b) is to provide the global view of the family of the neutral
curves. For ease in interpretation of results, it is worthwhile to compute specific
neutral curves as functions of frequency to gain more detailed information. We now
present some results from the long-wavelength analysis which might eventually be
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Figure 3. (a) Long-wavelength critical curves at the Earth-bound condition for longitudinal (solid
line) and transverse (dashed line) mode, showing the dependence of shear-induced stabilization
and destabilization on modulation frequency. Insert shows a magnified view near the stabilization
portion of the critical curves. (b) As (a) except at the microgravity condition.

used to compare with results of laboratory experiments. The parameters used are
based on water at room temperature. We let ν = 0.01 cm2 s−1, κ = 0.0014 cm2 s−1,
σ = 73 dyne cm−1, ρ = 1 g cm−3 and h = 0.1 cm. Say that the experiment is done on
Earth. These physical parameter values translate into the following non-dimensional
group values: Pr = 7, Cr = 1.9× 10−6 and B = 0.15. For such a layer, a temperature
difference across the layer of 0.1◦C will give M ≈ 115 but a Rayleigh number of ≈ 7.
This latter value is so small that the neglect of the buoyancy effect is indeed justified.
In the numerical study we used Cr = 2.0 × 10−6 and B = 0.15 for the Earth-bound
case. However, B = 0.15 × 10−5 is used for the microgravity case. The Biot number
was set at 0.1. The range of β used corresponds to ω∗ < 32 Hz.

We begin by presenting the stability limit of the deformation instability in a plane of
M versus β, based on the long-wavelength solvability condition. Figure 3(a) presents
the Earth-bound case when, without shear, the Pearson mode tends to be more
unstable; we will compare results for the various modes later. Both stability curves
correspond to Re = 200 but their effective Reynolds numbers are different. The solid
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line shows the neutral curve for the longitudinal mode (θ = π/2) at R =
√

0.5Re and
δ = π/2. The dashed line shows the neutral curve for the transverse mode (θ = 0)
at R = Re. Since the depth of the dips of the curves in the figures is significantly
larger than the height of the peaks, we magnify in the inserts to figures 3(a, b) the
peak portions on an enlarged scale for clarity. As β → 0, M assumes the value at the
purely thermocapillary limit, regardless of the value of Re because the shear vanishes
as β → 0. As β increases, the neutral curve starts to dip indicating that the oscillatory
shear destabilizes thermocapillary convection for low values of β. The minimum for
the dashed curve occurs at M = −0.3×104 and that for the solid one at M = 2.6×104,
near β = 1.1. The dip occurs within the band of frequencies characteristic of the first
unstable loop in figure 2(a, b), which is reasonable. An interesting result is that, as
β further increases, the pair of stability curves shoots up rapidly and gives rise to a
narrower band of frequencies within which shear acts instead to stabilize the long-
wavelength convection. The maxima of M for stabilization of the longitudinal and
transverse disturbances are approximately 5.53 × 104 and 5.56 × 104, respectively, at
approximately β = 3.0. Only very moderate stabilization for the Earth-bound case is
possible from the shear effect (less than 0.55% increase in M from the unmodulated
value). These results appear consistent with those obtained earlier using the small-
Reynolds-number expansion (see figure 3 of Or & Kelly 1995). The depth of the dip
and the height of the peak of the neutral curve from its value at β = 0 appear to be
scaled according to Re2.

Next, we consider the microgravity condition, again for Re = 200. For this case, Mc

has the small value of 0.5 at β = 0, suggesting that a steady layer can be extremely
unstable to long-wavelength convection even with a very small temperature gradient.
The deformational mode is the critical mode when Re = 0 for this case. Figure 3(b)
again shows a dip centred near β = 1.1, at values of approximately M = −2.9×104 for
the longitudinal (solid line) mode and M = −5.8×104 for the transverse (dashed line)
mode. Compared with figure 3(a), the dip appears deepened by reducing the Bond
number. However, the maxima in M also appear more pronounced. The maxima of
M again occur near β = 3.0, with peaks at about 300 for the longitudinal mode
and 600 for the transverse mode, indicating that very substantial stabilization is, in
principle, possible.

The minimum and maximum of M again appear to occur near β = 1.1 and
β = 3.0, respectively, independently of Re. For the isothermal case, these frequencies
correspond to the minimum of Re for the first unstable band and to a frequency
slightly to the left of the midpoint of the region between the first two unstable
bands. With M 6= 0, strong stabilization is also evident in figure 2(b) near β = 3.
The degree of stabilization at β = 3.0, defined by M(Re)/M(0), is shown in figure 4
with Re = 200 as a function of B and Pr. Figure 4(a) shows that as B approaches
1, this stabilization factor approaches 1 also. As B tends to zero, M(0) decreases
towards zero, consistent with the result of Scriven & Sternling (1964). The increase
in the stabilization ratio is most pronounced for B�1. Since Cr only appears in
the term B/PrCr in the long-wavelength limit, the dependence of the stabilization
factor on Cr can be inferred from that of B, shown in figure 4(a). Regarding the
Prandtl number, the curve in figure 4(b) shows that the stabilization factor increases
linearly in Pr for the microgravity case for the range shown; the results of Hu &
Kelly (1997) for Rayleigh–Bénard convection suggest that an asymptotic value exists
for very large values of Pr. Finally, if we vary Bi while keeping Pr at 7.0, other
results not presented here show that the stabilization factor assumes a constant value
at 533.7 over a wide range of Bi from 0.1 to 103, indicating that the mechanism
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Figure 4. The dependence of the maximal stabilization factor M(Re)/M(0) for Re = 200 on
(a) B and (b) Pr.

of stabilization is independent of the thermal boundary condition, although M(0)
depends on Bi.

4. The fully numerical results
We first describe briefly the method and then proceed to the results. The system

of equations (21)–(27) can be solved in two steps. First, we expand the dependent
variables in series form through a set of known spatial functions. Here we use the
Chebyshev polynomials. We then truncate the number of spatial functions for W
to NT + 4 and for Θ to NT + 2, since there are four boundary conditions for the
fourth-order equation governing W and two boundary conditions for the second-
order equation governing Θ. The boundary conditions are imposed by using the tau
method. This numerical procedure yields a finite matrix equation of the following
form:

2β2Bẋ = Ax+ iF (t)x, (42)

where all the matrices are real; B and A are time-independent and F (t) is 2π-periodic.
The state vector consists of an arrangement of the Chebyshev coefficients for W and
Θ and the deformation N.
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Figure 5. A pair of neutral curves showing multiple extrema in wavenumber dependence. The
non-planar shear has Re = 1000, β = 3.5, and is for the earth-bound condition. Solid (dashed) line
corresponds to the transverse (longitudinal) mode.

The matrix equation has an explicit time dependence. In order to solve it, the
second step is to apply Floquet theory by expanding x in standard Fourier series.
Since it has been shown that there are no subharmonic solutions when the modulation
term is purely imaginary (see Or 1997), we consider only synchronous solutions in
the form of

x(t) =

Np∑
n=−Np

X n eint+σt, (43)

where σ is the Floquet exponent. The vector functions X n are constants. The Fourier
series is truncated to 2Np + 1 terms in temporal modes. For our problem, numerical
convergence in the iterated parameter requires more temporal modes than spatial
modes. We typically use NT = 14 and Np = 24 to 28 to obtain numerical convergence.
The two-step numerical procedure appears standard and has been described in more
detail in the appendices of Or (1997).

Upon substitution of expression (43) into (42) we can place all the vector Fourier
coefficients into a single matrix eigenproblem. This system is tridiagonal but very large
typically. Rather than computing the augmented eigenproblem we use a fast iterative
approach which is Newton–Raphson based (see Or 1997). The iterative approach
is fast but it depends crucially on a good initial guess for obtaining a solution.
Difficulties in convergence in tracing a rapidly varying curve can be overcome by
developing iterations on a choice of different parameters; the most common iterate
is M, but here k, Re and β are also used as iterates occasionally. When operating in
the parameter regime where multiple modes are common, there is no guarantee that
the neutral curve obtained through the iterative method corresponds to Mc. Here,
extreme care in handling the computations has been taken; in particular, we use
small increments for the iterate and use automatic sweeps in the parameter range to
minimize the possible omission of new modes.

In order to determine in general the stability regions, it is necessary to compute
the neutral curves for a continuous range of k to locate the critical value. As an
illustration, in figure 5 we present a pair of neutral curves in k corresponding to
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Figure 6. Stability region bounded by the neutral curves (the solid portions show critical curves) of
several instabilities when arbitrary-wavenumber disturbances are included. The curves are computed
at β = 1.1 for (a) Earth-bound and (b) microgravity conditions.

the transverse (solid line) and the longitudinal (dashed line) mode for Earth-bound
conditions. We consider a case of strong shear, Re = 1000, so that multiple minima
can be captured within a moderate scale of M in the plot. The frequency corresponds
to β = 3.5. Figure 5 serves as an example for coexisting multiple extrema when the
long-wavelength and Pearson modes are well-separated in M. Three stationary points
are present, which represent three modes of instabilities. Besides the long-wavelength
mode as k → 0 and the Pearson mode at k ∼ O(1), there is a minimum of M at
an intermediate wavenumber of O(10−1), more precisely at k = 0.2. This corresponds
to the finite-wavelength shear instability reported earlier by Or (1997). The pair of
curves intersect at multiple points, indicating that the non-planar shear has different
effects on the various instabilities depending on roll orientation. Only by presenting
both neutral curves of the longitudinal and transverse modes over the full range
of the three instabilities can we conclude that the critical mode for this case is the
finite-wavelength shear instability in the transverse mode (solid curve). The critical
value is Mc = 773.2 and kc = 0.2.

Given the complicated nature of figure 5, determination of the maximal degree of
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Figure 7. Similar to figure 6 except at β = 3.5. The upper and lower inserts to (a) correspond to kc
for the Pearson and finite-amplitude shear modes.

stabilization or destabilization as a function of β for finite-k convection can be quite
a formidable task, since for each β we have to do a sweep on k to determine the
critical value of wavenumber. The stabilizing and destabilizing effects on convection,
however, can be featured at selected β values, such as β = 1.1, which corresponds
to the most destabilizing frequency for long-wavelength instability, and at β = 3.5,
which is slightly larger than the value for maximum stabilization.

In the next two figures, figures 6(a, b) and 7(a, b), we show the regions where cross-
over occurs between the long-wavelength and finite-wavelength neutral curves for the
two cases of Earth-bound gravity and microgravity. At β = 1.1, figure 6(a) corresponds
to the Earth-bound case where finite-wavelength disturbances are most unstable, and
6(b) corresponds to the microgravity condition where long-wavelength disturbances
dominate. According to the previous analysis by Or (1997), the codimension-two
point shown in figure 2 where the finite-k neutral curve branches out from the first
loop occurs at β = 0.98 for this set of parameters. Hence, the long-wavelength
and finite-wavelength shear instabilities are almost indistinguishable at β = 1.1.
At Earth-bound gravity, figure 6(a) shows on the right that the long-wavelength
neutral curve ramps down steeply so that it represents a barrier for the gently
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(Re = 193); (b) the corresponding kc.

increasing neutral curve corresponding to the longitudinal rolls of the Pearson mode
of convection, which are stabilized by the shear. The cross-over occurs at about
Re = 192. Since the cut-off curve is very steep, the value of Re at the cross-over point
is approximately equal to that for the isothermal value at M = 0 (see figure 2). Beyond
Re = 192, long-wavelength convection replaces the Pearson mode of convection as
the dominant unstable mode. In the inserted panel of figure 6(a), we show the change
in the critical wavenumber of the Pearson rolls as Re increases. Keeping the other
parameters unchanged, we now switch to the microgravity condition by changing B
only. The value of B for microgravity is a factor of 10−5 smaller than the Earth-
bound value. From figure 6(b), the stability diagram looks quite different. Because
the long-wavelength instability now occurs at a much smaller value of M for Re = 0
than that for the Pearson mode, the latter mode of instability need not be considered.
It is clear that shear modulation destabilizes the long-wavelength mode, as indicated
earlier in regard to figures 2(b) and 3(a).

Similar to figures 6(a) and 6(b) but for the higher β = 3.5, the stability curves
for the Earth-bound and microgravity cases are shown in figures 7(a) and 7(b). For
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the Earth-bound case figure 7(a) shows two neutral curves crossing in a very similar
manner to the ones at β = 1.1, although at a much larger value of Re. Here, at
β = 3.5, Yih’s long-wavelength instability is no longer present, and the steep barrier
curve is now identified with the finite-wavelength modulated shear instability found
by Or (1997). Similar to figure 6(a), shear stabilization occurs in the non-planar case
for the Pearson mode, as indicated by the gently increasing neutral curve in Re. The
maximal stabilization here is larger than in figure 6(a) because the cut-off Re for this
case is almost 5 times the previous value. At β = 3.5, the critical wavenumbers for
both stability curves are finite in figure 7(a). The inserted panels, however, show that
the two kc differ by an order of magnitude or more. The gently increasing neutral
curve corresponds to a longitudinal mode. The neutral curve on the right that acts
as a barrier corresponds to the transverse mode. In figure 7(b), the neutral curve for
long-wavelength convection is the solid curve starting at Mc = 0.55 when Re = 0 and,
along it, Mc increases with Re. This curve is the boundary of the stable region until Re
reaches a value of 425. Between Re = 425 and 615, the Pearson mode of convection
becomes favoured. Beyond Re = 615, the finite-k oscillatory-shear instability studied
by Or (1997) acts as the stability barrier. The prediction then is that Mc can be
increased from 0.55 for the long-wavelength mode to 846.5 for the Pearson mode
(at kc = 4.7) by the use of a non-planar oscillatory shear. The cut-off occurs at
Re = 615 from the emergence of a finite-k shear instability (transverse rolls) at a
critical wavenumber of 0.25 which replaces the Pearson mode (longitudinal rolls) as
the preferred mode of convection. We conclude that the modulating frequency is an
essential parameter since its value determines whether the long-wavelength convection
is stabilized or destabilized by the shear.

Figures 6(a) and 7(a) indicate that the Pearson mode can be stabilized by the use
of unsteady shear at two discrete frequencies, and so it is of interest to show how
the amount of stabilization varies as a function of the frequency. Figure 8 presents
results for two different values of Re, one being near the cut-off value. Figure 8(a)
indicates that the optimal frequency is somewhat dependent upon the value of Re but
that significant stabilization occurs over a wide enough range of β that stabilization
can be obtained without precise tuning. Figure 8(b) shows the critical wavenumber
as a function of frequency for the two cases.

5. Summary and conclusion
Thermocapillary convection (without modulation) can occur on a linear basis via

either the finite-wavelength Pearson mode or the long-wavelength Scriven–Sternling–
Smith mode. Or & Kelly (1995) demonstrated by means of a small-amplitude ex-
pansion that an imposed non-planar periodically modulated shear can stabilize the
Pearson mode but can also destabilize the long-wavelength mode. The stabiliza-
tion by unsteady shear is akin to the stabilization of Rayleigh–Bénard convection
discussed by Kelly & Hu (1993, 1994). The destabilization was thought by Or &
Kelly (1995) to be connected to the long-wavelength interfacial instability found by
Yih (1968) for an isothermal layer with a free surface undergoing periodic shear,
but nothing definite could be said due to the limitations of the analysis. For this
reason, as well as to establish the extent of possible stabilization or destabiliza-
tion, the analysis for finite-amplitude modulation was carried out, and the results
are reported here. This extension was done with the knowledge that Or (1997) has
shown that a finite-wavelength mode of instability also occurs for the isothermal
problem.
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The approach in this paper was to investigate the problem first for long-wavelength
disturbances, in which case a smaller group of non-dimensional parameters governs
the onset of instability. In comparing the isothermal layer results of figure 2(a) to
the heated layer results of figure 2(b), it is clear that the thermocapillary effect can
have a strong influence upon the tongues of instability associated with the interfacial
instability discovered by Yih (1968), first causing them to occur only at low frequencies
of modulation and ultimately eliminating the banded structure. Conversely, the curves
for constant M∗ equal to 10−1 and 10−2 show destabilization near β ≈ 1 which
corresponds to the most dangerous frequency in the isothermal case. This effect is
shown even more graphically in figures 3(a) and 3(b) for a fixed value of Reynolds
number and two different values of Bond number. Hence, if one wishes to stabilize
the basic state, it is important to operate away from the most dangerous frequencies
associated with the isothermal situation. Assuming that this is done, figures 4(a) and
4(b) indicate that long-wavelength disturbances can be greatly stabilized at the low
values of Bond number characteristic of the microgravity case and at high values of
Prandtl number.

In order to obtain an overall description of the stable regions, finite-wavelength
disturbances also had to be considered. The Pearson mode of instability, which is
dominant on Earth except for very thin layers, tends to be stabilized over a broad
range of frequencies, as shown in figure 8(a). The extent of the stable region on Earth
is fixed as Re increases by the destabilization and eventual dominance of the Scriven–
Sternling–Smith mode for the lower value of frequency or the Or mode at the higher
value. For β = 3.5, the value of Mc is increased by an order of magnitude based on the
current analysis. For the microgravity condition, the Scriven–Sternling–Smith mode
tends to be dominant and is destabilized by the unsteady shear, as seen in figure 6(b),
if the frequency is tuned to the most dangerous value for the Yih instability. For a
higher value of frequency, however, this mode is stabilized, as shown in figure 7(b), so
that the Pearson mode becomes more critical. The maximal amount of stabilization
is controlled by the Or mode.

Our main conclusion is that stabilization of thermocapillary convection can be
achieved both on Earth and in a microgravity environment as long as the frequency
of modulation can be controlled. Precise control of the frequency is not required as
long as the frequency is not close to the most critical value for the Yih instability. In
order to increase heat transfer at small values of Marangoni number, however, the
frequency should be as close to the most critical frequency as possible.

In order to place the above results in perspective, some remarks on the possible
shear instability of the isothermal Stokes layer are in order. Research results for
this problem have been reported in terms of a Reynolds number Reδ based on
the thickness of the Stokes layer and related to the Reynolds number used in this
paper by formula Reδ = β−1Reh. There is by no means universal agreement among
experimentalists as to the value of Reδ,c and a theoretical value does not seem to
exist; see the paper by Blondeaux & Vittori (1994). There is more general agreement
that the value for transition is Retr ≈ 500. If this value is used as an estimate, then the
values of Reh used for the most part in this paper would correspond to the laminar
regime for a Stokes layer in an isothermal fluid. Further research on this aspect of
the problem is required in order to define fully the stable regions.

This research has been supported by the NASA Microgravity Fluid Physics Program
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